Statistical Computing, 36-350
Monday - July 1, 2019
All 3 are free, and all 3 will be used extensively in this course
It’s on the course website, please read it (actually read it)
Data types, operators, variables
Two basic types of things/objects: data and functions
log
, +
(takes two arguments), <
(two), %%
(two), and mean
(one)A function is a machine which turns input objects, or arguments, into an output object, or a return value (possibly with side effects), according to a definite rule
The trick to good programming is to take a big transformation and break it down into smaller ones, and then break those down, until you come to tasks which are easy (using built-in functions)
At base level, all data can represented in binary format, by bits (i.e., TRUE/FALSE, YES/NO, 1/0). Basic data types:
TRUE
or FALSE
in RNA
, NaN
, etc.-
for arithmetic negation, !
for Boolean negation+
, -
, *
, and /
(though this is only a partial operator). Also, %%
(for mod), and ^
(again partial)## [1] -7
## [1] 12
## [1] 2
These are also binary operators; they take two objects, and give back a Boolean
## [1] TRUE
## [1] FALSE
## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] TRUE
Warning: ==
is a comparison operator, =
is not!
These basic ones are &
(and) and |
(or)
## [1] FALSE
## [1] TRUE
## [1] FALSE
## [1] TRUE
Note: The double forms &&
and ||
are different! We’ll see them later
typeof()
function returns the data typeis.foo()
functions return Booleans for whether the argument is of type fooas.foo()
(tries to) “cast” its argument to type foo, to translate it sensibly into such a value## [1] "double"
## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] TRUE
## [1] FALSE
## [1] TRUE
## [1] TRUE
## [1] FALSE
## [1] "0.833333333333333"
## [1] 0.8333333
## [1] 5
## [1] FALSE
We can give names to data objects; these give us variables. Some variables are built-in:
## [1] 3.141593
Variables can be arguments to functions or operators, just like constants:
## [1] 31.41593
## [1] -1
We create variables with the assignment operator, <-
or =
## [1] 3.142857
## [1] 31.42857
The assignment operator also changes values:
## [1] 31.42857
## [1] 30
What variables have you defined?
## [1] "approx_pi" "circumference" "diameter"
Getting rid of variables:
## [1] "approx_pi" "diameter"
## character(0)
Data structures
## [1] 7 8 10 45
## [1] TRUE
c()
function returns a vector containing all its arguments in specified order1:5
is shorthand for c(1,2,3,4,5)
, and so onx[1]
would be the first element, x[4]
the fourth element, and x[-4]
is a vector containing all but the fourth elementvector(length = n)
returns an empty vector of length n; helpful for filling things up later
## [1] FALSE FALSE FALSE FALSE FALSE
## [1] 0 0 0 0 8
Arithmetic operator apply to vectors in a “componentwise” fashion
## [1] 0 0 0 0
## [1] -49 -64 -100 -2025
Recycling repeat elements in shorter vector when combined with a longer one
## [1] 0 0 3 37
## [1] 7.000000 1.000000 0.100000 6.708204
Single numbers are vectors of length 1 for purposes of recycling:
## [1] 14 16 20 90
Can do componentwise comparisons with vectors:
## [1] FALSE FALSE TRUE TRUE
Logical operators also work elementwise:
## [1] FALSE FALSE TRUE FALSE
To compare whole vectors, best to use identical()
or all.equal()
:
## [1] TRUE TRUE TRUE TRUE
## [1] TRUE
## [1] FALSE
## [1] TRUE
Note: these functions are slightly different; we’ll see more later
Many functions can take vectors as arguments:
mean()
, median()
, sd()
, var()
, max()
, min()
, length()
, and sum()
return single numberssort()
returns a new vectorhist()
takes a vector of numbers and produces a histogram, a highly structured object, with the side effect of making a plotecdf()
similarly produces a cumulative-density-function objectsummary()
gives a five-number summary of numerical vectorsany()
and all()
are useful on Boolean vectorsVector of indices:
## [1] 8 45
Vector of negative indices:
## [1] 8 45
Boolean vector:
## [1] 10 45
## [1] -10 -45
which()
gives the elements of a Boolean vector that are TRUE
:
## [1] 3 4
## [1] -10 -45
We can give names to elements/components of vectors, and index vectors accordingly
## [1] "v1" "v2" "v3" "fred"
## fred v1
## 45 7
Note: here R is printing the labels, these are not additional components of x
names()
returns another vector (of characters):
## [1] "fred" "v1" "v2" "v3"
## [1] 4
A matrix is a specialization of a 2d array
## [,1] [,2]
## [1,] 40 60
## [2,] 1 3
## [1] 2 2
## [1] TRUE
## [1] TRUE
dim
says how many rows and columns; filled by columns by defaultncol
for the number of columnsbyrow = TRUE
z_mat/3
)Can access a matrices either by pairs of indices or by the underlying vector (column-major order):
## [1] 60
## [1] 60
Omitting an index means “all of it”:
## [1] 60 3
## [1] 60 3
## [,1]
## [1,] 60
## [2,] 3
Many functions applied to an array will just boil things down to the underlying vector:
## [1] 1 3
This happens unless the function is set up to handle arrays specifically
And there are several functions/operators that do preserve array structure:
## [,1] [,2]
## [1,] 41 63
## [2,] 3 7
Others specifically act on each row or column of the array separately:
## [1] 100 4
## [1] 41 63
Has its own special operator, written %*%
:
## [,1] [,2] [,3]
## [1,] 7 7 7
## [2,] 7 7 7
## [,1] [,2] [,3]
## [1,] 700 700 700
## [2,] 28 28 28
Numeric vectors can act like column or row vectors, as needed:
## [,1]
## [1,] 1600
## [2,] 70
## [,1] [,2]
## [1,] 420 660
Transpose:
## [,1] [,2]
## [1,] 40 1
## [2,] 60 3
Determinant:
## [1] 60
rownames()
and colnames()
names()
for vectorsA list is sequence of values, but not necessarily all of the same type
## [[1]]
## [1] "exponential"
##
## [[2]]
## [1] 7
##
## [[3]]
## [1] FALSE
Most of what you can do with vectors you can also do with lists
[ ]
as with vectors[[ ]]
, but only with a single index [[ ]]
drops names and structures, [ ]
does not## [[1]]
## [1] 7
## [1] 7
## [1] 49
Add to lists with c()
(also works with vectors):
## [[1]]
## [1] "exponential"
##
## [[2]]
## [1] 7
##
## [[3]]
## [1] FALSE
##
## [[4]]
## [1] 9
Chop off the end of a list by setting the length to something smaller (also works with vectors):
## [1] 4
## [[1]]
## [1] "exponential"
##
## [[2]]
## [1] 7
##
## [[3]]
## [1] FALSE
Pluck out all but one piece of a list (also works with vectors):
## [[1]]
## [1] "exponential"
##
## [[2]]
## [1] FALSE
We can name some or all of the elements of a list:
## $family
## [1] "exponential"
##
## $mean
## [1] 7
##
## $is.symmetric
## [1] FALSE
## [1] "exponential"
## $family
## [1] "exponential"
Lists have a special shortcut way of using names, with $
:
## [1] "exponential"
## [1] "exponential"
Creating a list with names:
Adding named elements:
Removing a named list element, by assigning it the value NULL
:
family
, we can look that up by name, without caring where it is (in what position it lies) in the listrowSums()
, summary()
, apply()
)## v1 v2
## [1,] 35 10
## [2,] 8 4
## [1] 35 8
## v1 v2 logicals
## 1 35 10 TRUE
## 2 8 4 FALSE
## [1] 35 8
## [1] 35 8
## v1 v2 logicals
## 1 35 10 TRUE
## v1 v2 logicals
## 21.5 7.0 0.5
We can add rows or columns to an array or data frame with rbind()
and cbind()
, but be careful about forced type conversions
## v1 v2 logicals
## 1 35 10 TRUE
## 2 8 4 FALSE
## 3 -3 -5 TRUE
## v1 v2 logicals
## 1 35 10 1
## 2 8 4 0
## 3 3 4 6
Much more on data frames a bit later in the course …
So far, every list element has been a single data value. List elements can be other data structures, e.g., vectors and matrices, even other lists:
## $z_mat
## [,1] [,2]
## [1,] 40 60
## [2,] 1 3
##
## $my_lucky_num
## [1] 13
##
## $my_list
## $my_list$family
## [1] "exponential"
##
## $my_list$mean
## [1] 7
##
## $my_list$is.symmetric
## [1] FALSE
##
## $my_list$last_updated
## [1] "2015-09-01"