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Abstract
Simulation models are often employed in situ-
ations where the relationship between a set of
features x and an outcome y is too complicated to
allow for the use of an analytical form. Examples
are prevalent in the sciences, where the complex
processes that generate observable data make ex-
plicitly learning the distribution of the data im-
possible, but theoretical understanding of the data
generating process does allow for its simulation.
In this paper we present a conformal approach to
quantify uncertainty for situations where a simu-
lator can generate potential values of y, the object
of interest. Our approach combines split confor-
mal inference to reduce computational costs and
nested conformal inference to make sure our pre-
diction regions can be explicitly defined even for
complex outcome spaces. We provide strategies
for setting tuning parameters, and demonstrate the
approach on multiple examples including when y
is a multivariate function.

1. Introduction
Often, the appropriate interpretation of predictions of future
observations requires accurate quantification of uncertainty
in those forecasts. Prediction regions, constructed to contain
the true observation with some level of probability 1 − α,
are commonly utilized. In order to achieve this coverage
property (referred to as validity), different approaches resort
to different types of assumptions (Bayesian priors, Gaussian
and IID regression residuals, smoothness of the generating
density, etc.) (Wasserman, 2006, pg. 6). All methods that
create prediction regions have a vested interest in providing
validity across as many settings as possible while also being
efficient, i.e., limiting the size of the region.

This work focuses on creating prediction regions that
achieve these dual goals through the use of a simulation
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model. In the canonical setup, we have a set of features
X that are related to an outcome variable Y , and we have
available a simulation model that generates potential y val-
ues given a particular value of X = x. We also assume
that we have an available training sample of observed (x, y)
pairs. Our objective is a prediction region for Y , hence we
are more interested in the space that Y is from, which we
denote Y and call the outcome space. The work in this pa-
per focuses on building prediction regions for a wide range
of outcome spaces, from the common Euclidean spaces to
more complex geometric objects (e.g. the path of a hur-
ricane or the impact of an epidemic on the proportion of
a population infected versus susceptible over time). It is
instructive to stress that our setup is not consistent with
that used in simulation-based inference (e.g. Cranmer et al.,
2020), as we are quantifying the uncertainty we have about
y values with simulations of potential y values.

In the remainder of this paper we define zi = (xi, yi) ∈
X × Y as the fundamental unit of observation, and we
assume that (for prediction purposes) we can observe xi
prior to yi. We also assume that we have a simulation
model that can produce sets of simulations in Y denoted
Sim(xi, B) = {ŷbi }Bb=1 ∈

∏B
b=1 Y , with B being the num-

ber of simulations generated by the model.

To create prediction regions with valid coverage for a wide
range of different outcome spaces our approach utilizes
ideas from conformal prediction (also known as conformal
inference). Conformal prediction provides a means to con-
struct prediction regions with marginal finite sample validity
while only assuming the exchangeability of observations
(Vovk et al., 2005). With such a minimal assumption, con-
formal prediction has been applied to situations in which
models can be viewed as “black boxes,” including complex
regression models, classification models, and in many other
situations (e.g. respectively Lei et al., 2018; Shafer and
Vovk, 2008; Lei and Wasserman, 2014). Nevertheless, the
use of simulation models in conjunction with conformal
prediction is novel.

Standard conformal prediction constructs a prediction re-
gion by assessing the conformity of every potential y to
previously observed data. This is unrealistic in motivat-
ing cases where y is a geometric object, such as a tropical
cyclone path, existing in an outcome space that cannot be
completely explored. Through a combination of the split
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conformal and nested conformal algorithms, we are able to
to avoid training multiple simulation models and also the
need to assess the conformity of every potential y value.

In the remainder of this paper we present our approach and
discuss its properties and use. In Section 2, we introduce
related work and the foundations of conformal inference,
as well as discuss simulation-based prediction regions and
prediction regions for complex functional data (a primary
motivator for this work). In Section 3 we discuss our method
(and variants) in detail with an exploration of a basic two-
dimensional outcome space. In Section 4 we examine our
proposed method’s attributes applied to two oracle1 exam-
ples; the first with a simple one-dimensional outcome space
and the second with a more complex multivariate functional
outcome space. In Section 5 we discuss overall observations
and potential future work.

2. Related Work
This section highlights related and relevant work in con-
formal prediction, simulation/observation-based prediction
regions, and prediction regions for complex functional data.

Conformal prediction defines finitely valid prediction re-
gions while only assuming the exchangeability of observa-
tions, and hence is widely applicable (Vovk et al., 2005).
Generally speaking, conformal prediction creates prediction
regions by first defining an application-specific conformal
score (cs) which measures to what extent a potential new
observation y′new conforms with our expectation of what
it should be (based on its features xnew and previously
observed data). Conformal prediction then defines the pre-
diction region to contain all y′new that have a conformal
score greater than the 100 · α% lowest conformal scores
from previously observed data.

Split conformal prediction (Vovk et al., 2005, pg. 110-111)
is a commonly-used procedure to apply conformal inference.
This approach leverages sample splitting so that only a sin-
gle model need be fitted, unlike the original online approach
that allows for sequential analysis but requires the model to
be refit for each of a new observation’s potential values (see
Vovk et al., 2005, pg. 17-27). Split conformal prediction
is initiated by dividing the fully observed observations into
a training and calibration set. The training set is used to
construct a model, and then conformal scores are calculated
for each observation in the calibration set relative to the
trained model. For a new observation xnew, we build a pre-
diction region from those y′new that have conformal score
greater than the α percentile of the calibration set’s confor-
mal scores. Algorithm 1 presents the decision protocol for
including a potential y′new into the prediction region under

1In this paper, we use oracle to imply that the simulations are
drawn from the true conditional distribution.

split conformal inference in the setting considered here.

Algorithm 1 Split Conformal Inference
Input: Nonconformal measure A, significance level ε,
training examples {z1, . . . , zm}, calibration examples
{zm+1, . . . , zn}, object xnew and a potential y′new, where
zi = (xi, yi)
Task: to decide if y′new should be in the prediction region
Γε(xnew; z1, . . . zn).
Algorithm:

1. Provisionally set znew = (xnew, y
′
new)

2.1. Nonconformal scores for the calibration data:
For all j ∈ {m+ 1, . . . , n} set

αj = A(zj ; z1, . . . , zm)

2.2. Nonconformal scores for new observation:

αnew = A(znew; z1, . . . , zm)

3. Set

py′new =
#{j = m+ 1, . . . , n, new : αj ≥ αnew}

n−m+ 1

4. Include y′new in Γε(xnew; z1, . . . zn) if py′new > ε.

Conformal prediction regions can be viewed as level sets
in the outcome space defined by the conformal score func-
tion. Specifically, the region contains all y′new such that
cs(y′new|x′new) is greater or equal to some threshold. Hence,
a given conformal score function defines a collection of
nested level sets (Vovk et al., 2005, pg. 9). Specifically,
denote the level set as `(λ) = {y : cs(y|x) ≥ λ} then
`(λ) ⊆ `(λ′) if λ > λ′.

Gupta et al. (2020)’s recent work on nested conformal pre-
diction demonstrated the value of reversing the relationship
between the conformal score and its associated nested level
sets. Specifically, Gupta et al. (2020) showed that if one
creates a sequence of nested sets, one could define a ra-
dius function that relates containment in the level sets to a
nonconformal2 score. This radius function is defined as

r(x, y) := inf{t ∈ T : y ∈ Ft(x)} ,

where {Ft(x)}t∈T is a set of nested sets where Ft(x) ⊆ Y
and Ft(x) ⊆ Fs(x) when s ≤ t and T captures the full
sequence of t values for Ft. Nested conformal prediction
has the added benefit of naturally defining the shapes of the

2Conformal prediction also defines nonconformal scores which
are the reverse of a conformal score - meaning the higher a the
nonconformal score the more extreme the observation is.
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prediction regions explicitly, which allows the user to avoid
needing to evaluate all potential y′new values. Prediction
regions structures are often well defined (e.g. Lei et al.,
2018), but this approach is very useful when they are not.

There is a long history of leveraging previous observations
and/or simulations to create prediction and confidence re-
gions. Possibly the most well known is bootstrap prediction
and confidence regions, which can rely on either parametric
assumptions or independence of residuals to define pre-
diction bands that contain the desired level of probability
(Wasserman, 2006, Chapter 8).

Transformation of simulated or observed data into a region
of fixed probability is typically accomplished via quantile-
based bands or density level sets. These approaches are opti-
mally efficient in cases where the data distribution is known.
In conformal inference, Romano et al. (2019) created quan-
tile regression approaches that use conformal prediction and
Lei and Wasserman (2014) has created conformal predic-
tion regions from kernel density level sets based on a set of
previously observed data. In this paper we follow behind
Lei and Wasserman (2014) and aim to approximate den-
sity level sets relative to the simulations generated. Many
papers have focused on optimal (and asymptotically consis-
tent) ways to estimated a density’s true level set while being
computationally viable, include Walther (1997) and Baı́llo
et al. (2000). Both Walther (1997) and Baı́llo et al. (2000)
developed methods to estimate density level sets through dif-
ferent unions of balls around observed or simulated points,
but with different geometric assumptions.

Our proposed method focuses on being used for simula-
tions in both complex and simple outcome spaces. One
example of a complex space where prediction regions are
desirable but can be hard to create is when the outcomes are
functional data (Ramsay and Silverman, 2005). Lei et al.
(2015) and Fontana et al. (2020) have demonstrated how
conformal prediction regions can be created for univariate
functional data (with observations f(·) such that f(t) ∈ R1,
and t ∈ [0, 1]). Fontana et al. (2020) constrained the predic-
tion region by defining them relative to functional residuals.
Lei et al. (2015) defined a prediction region through point-
wise upper and lower points. Though Lei et al. (2015)’s
approach was more flexible, it is only able to provide a
conservative prediction region as they could not evaluate
all potential outcomes with their conformal score - given
the outcome space was infinite dimensional. Both of these
functional papers also focus on univariate (one-dimensional)
functional data and are not able to be extended to multivari-
ate functional data (where the space the function projects
into is multi-dimensional). We see our work as helping
extend conformal prediction in complex application spaces
such as these.

3. Methods
In this section we propose a split conformal approach for
quantifying uncertainty that utilizes nested conformal pre-
diction to define prediction regions for simple and complex
outcome spaces Y . Our method only requires that we pos-
sess a simulator that can generate a set Sim(xi, B), and that
the outcome space be endowed with a distance metric, dY .
For illustration purposes, we will introduce the proposed
method under the assumption that Y ⊆ Rd, and that the
associated distance dY is Euclidean distance. This section
will also discuss theoretical attributes of our method (Sec-
tion 3.2) as well as desirable practical features (Section 3.3).
We will show how practitioners can select associated tuning
parameters in Section 3.4. Finally, in Section 3.5, we will
propose extensions to our method to generalize to outcome
spaces beyond Rd.

3.1. Basic Method

Using nested conformal inference, as described in Section
2, we first define a procedure that takes in simulated points
(Sim(xi, B)) and returns a sequence of nested sets. The
procedure starts by ranking all members of (Sim(xi, B)).
We propose ranking these simulations with a Gaussian ker-
nel pseudo-density3 estimator based on dY , and Sim(xi, B)
with values

λbi =
1

B

B∑
`=1

K
(
dY(ŷbi , ŷ

`
i )/σ

)
(1)

for b = 1, 2, . . . , B, and where

K(u) := exp(−u2) .

Note that for Rd, these could be associate with a kernel
density estimator if we scaled them by 1/((2π)d/2σ). We
can then define λ(b)i to be the bth order statistic of the kernel
pseudo-density values. We construct our nested level sets
{Ft}Bt=0 as follows:

1. F0(Sim(xi, B)) :=Y (the full space)

2. Ft(Sim(xi, B)) :=
⋃

{ŷbi∈Sim(xi,B):

λbi≥λ
(t)
i }

B(ŷbi , δ
b,t
i )

for t ∈ {1, ..., B}, where B(ŷbi , δ
b,t
i ) is a ball centered

at ŷbi with radius δb,ti .

This can seen as defining any particular set Ft as a union
of balls around the subset of simulation points ŷbi ∈

3The pseudo-density defined below is not correctly scaled to be
a density estimate, and pseudo-densities are more general as they
can be defined on spaces that cannot have densities associated with
them, see Ciollaro et al. (2016) for examples and more details.
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Sim(xi, B) with λbi ≥ λ
(t)
i with a small-ball-radius4 δb,ti .

In order for this sequence of sets to be nested (Ft ⊆ Ft−1),
we require δb,ti ≤ δ

b,t+1
i .

We can then define a conformal score for these nested sets
as the mapping

cs(y) = max{t ∈ {0, ..., B} : y ∈ Ft} . (2)

Hence, if an observation y has a conformal score of t then
y ∈ Ft and y /∈ Fs for s > t. Figure 1 shows a sequence
of nested sets for an example set of simulations where Y ⊆
R2 and δb,t? is a fixed value (for all b and across values
of t). Figure 1 displays three of the nested sets related to
these simulations, and highlights the conformal score that
a potential point y would have if it was contained in the
observed level set, but not the level set created with one
fewer simulation point. This figure also illustrates that the
index t of the set Ft is directly related to the number of
points used for the construction of the region.

3.2. Theoretical properties

This manner of defining a sequence of nested sets and asso-
ciated conformal score (cs) has some desirable properties.
First, our prediction regions are naturally conservatively
valid. This follows from the well-known conformal conser-
vative coverage guarantee, which is described for the split
conformal version of nested conformal prediction in Gupta
et al. (2020, pg. 6)’s Proposition 1. This can be rewritten in
our notation as follows:

Proposition 1 Suppose {(Xi, Yi)}i∈[n]∩{n+1} are ex-
changeable, and we have (i) disjoint training and calibra-
tion sets I1 and I2, (ii) conformal score cs as defined in
equation 2, (iii) quantile function defined as

Q1−α(cs, I2) :=d(α)(|I2|+ 1)e/(|I2|+ 1)-quantile of

{cs(yi|xi)}i∈I2
,

and (iv) prediction set function C(·) defined as

C(X) := FQ1−α(cs,I2) .

Then

P(Yn+1 ∈ C(Xn+1)|{(Xi, Yi)}i∈I1) ≥ 1− α .

Below we define a modified nested set structure with an ad-
ditional source of randomness τ , resulting in a new predic-
tion set function C ′(X, τ) and the approach being a smooth
conformal predictor. This predictor will obtain the exact
coverage guarantee as described in Vovk et al. (2005, pg.
27)’s Proposition 2.4.

4We use the phrase ”small-ball-radius” to distinguish from the
radius function of Gupta et al. (2020), but these are just gemetric
radii, not necessarily small ones.

Simulation-based nested set
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Figure 1. This figure presents a subset of the nested sets in
{Ft}21t=0 relative to a set of simulation points. As one moves
from top to bottom the rows represent level sets with more an more
simulation point removed for use to define the prediction region.
We highlight the simulation points that are used to create the level
set in solid black dots (that have high enough density estimates),
and those that are not used in open circles. Notice how each of
the regions is nested, and visually can be seen as have the same
small-ball-radius across all level sets.
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Proposition 2 Define a function

C ′(X, τ) :=

{
Fb−1(X) if τ < τ?

Fb(X) if τ ≥ τ?

where b = Q1−α(cs, I2) and

τ? =
α(|I2|+ 1)− |{i = I2 : cs(yi|xi) > t}|

|{i = I2 : cs(yi|xi) = t}|+ 1
. (3)

Moreover, suppose for any new (Xn+1) is paired with a
τn+1 ∼ Unif(0, 1), independent of (Xn+1) and (Yn+1).
Then the associated nested set conformal predictor is
a smooth conformal predictor and following Vovk et al.
(2005)’s Proposition 2.4, is exactly valid.

Our proposed nested sets are similar to density level set
estimates, which are the most efficient prediction regions
under oracle settings (i.e., when the simulator draws from
the true distribution) as discussed in Lei and Wasserman
(2014). Although Section 3.4 will discuss multiple possibil-
ities for defining δb,ti , our approaches mirror ideas in Baı́llo
et al. (2000), which selects the radius δb,ti for a given level
set by finding the minimum radius required to have every
point covered by a union of balls around the other points.
Baı́llo et al. (2000) showed that this converges to the true
level set for any fixed density cutoff.

Moreover, with sufficiently small δb,ti and under the simula-
tors’ distribution conditional on xi, the proportion of mass
contained by the union of balls Ft would be close to t/B.
In other words, if an observation has a conformal score of
bγ ·Bc, we would expect proportion γ of the simulations to
be contained in the set that the observation was contained
in. Under an oracle setting where the simulator captured the
true generative distribution, cs(Y |x)/B would be a discrete
approximation of a highest (posterior) density region (HPD)
value. In the oracle setting this can be seen as providing the
most efficient prediction regions in conformal inference at
a marginal and local level (Izbicki et al., 2021). We will
examine this property in the examples in Section 4.

3.3. Practical properties

Beyond the theoretical properties, we want to highlight the
definition of F0 and its potential relevance to the practi-
tioner. If the simulation model underestimated the spread
(uncertainty) of the true distribution one would expect a
non-trivial proportion (ξ) of the calibration set to have a
conformal scores of 0 (contained only in the F0, defined
as the full response space). By construction, that would
mean if the practitioner wished to have a prediction region
with confidence greater than or equal to (1− ξ), then this
approach would predict F0, i.e. provide a non-informative
response. Practitioners would be able to use this ξ to express
the maximum level of coverage that could be given without
being uninformative.

3.4. Selecting tuning parameters

This approach has three tuning parameters: the number of
simulations, the σ value for the density estimate, and the δb,ti
that defines the small-ball-radii of the balls that comprise the
sets. In this section we discuss the selection of the number
of simulations, describe an approach to selecting σ, and a
few ways to specify the δb,ti .

The number of simulations a model outputs is often a trade-
off between the time and computational complexity to create
and process the simulations and a desire to have enough sim-
ulations to well represent the simulated distribution. For
our method, most of the computations can be performed in
advance of obtaining new observations for which predic-
tions are required. Ultimately, the general prediction region
creation for a single observation is not too costly. Because
of the discrete nature of the associated conformal score,
more simulations will lead to a more granular conformal
score distribution and a more granular prediction region.
In Section 4 we vary the number of simulations, and show
that smaller B does naturally lead to increased volatility.
Ultimately, this choice will be subject to the computational
resources available to the user.

The most important tuning parameter for this method is
likely σ, the scaling for the distance based pseudo-density
estimator. In Section 3.5 and Section 5 we will discuss other
ways to order the simulations, but density-related ordering
helps the regions inherit efficiency properties from density
level sets. We propose tuning the σ value using methods
similar to those used in mode clustering (e.g. Lei et al., 2013,
Proposition 4.1). Given that we only assume access to a
distance measure dY , we propose using a grid search across
the quantiles of the pairwise distances between simulations
to select σ. We suggest using an associated quantile value
(e.g. 25%) to then be used across different X values. To
actually select the optimal quantile with grid search, we
suggest the practitioner select a few (at least three) sets of
simulations with different number of modes, and use the
mean-shift mode clustering algorithm (e.g. Ciollaro et al.,
2016) to cluster the observations with different values of σ-
quantile values. The optimal σ value should then be selected
if it identifies the correct number of mode clusters for each
of the different simulation set examples.

A more complex parameter to tune is the small-ball-radii
of the balls that make up the sequence of nested sets. We
propose and compare a few approaches in Section 4. The
first is to define a single small-ball-radius for every point
and every set in the sequence of sets. We propose a rule of
thumb of using the minimum covering radius on the top 80%
of the observations relative to the density estimate. This is
motivated by work by Baı́llo et al. (2000) that use minimum
covering radius to define a estimate of a density level set,
and the 80% threshold mirrors suggestions in local depth
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literature like (Agostinelli and Romanazzi, 2011, pg. 825)).

A more complex approach to define the small-ball-radii is
to vary δb,ti relative to the associated level set that is being
estimated (i.e, for any point ŷbi , δ

b,t
i ’s value varies as we

vary t). We cannot strictly follow approaches such as Baı́llo
et al. (2000) or Walther (1997) as we also need to constrain
the sets to be nested, but we propose a constrained approach
that reflects Baı́llo et al. (2000)’s structure. Specifically, we
define a function

radvary(t) = max
b≤t

min
b′≤t
b′ 6=b

d(y
(b)
? , y

(b′)
? ) , (4)

and then define the small-ball-radius δb,t? as

δ
(b),t
? = max

t≤s≤(b)
radvary(s) .

The second condition enforces the nested set constraint.
For any fixed level set to estimate, and assuming a more
discretized radvary(t) function above that desired threshold,
we can obtain convergence to the true level set as the number
of simulations B →∞ which mirrors Baı́llo et al. (2000).

Proposition 3 For Y ⊂ Rd, compact. As the number of
simulations n for any given xi goes to infinite, let radvary(t)
vary only at a discrete number of t value associated with
fixed density level set cutoffs {cj}Pj=1. Then each level
set Ft′ , where t′ is the number of simulations with density
estimates greater or equal to cj and with δi,t defined as
above, will converge true density level set with cutoff cj .

Without this discretization of the radvary(t), we observe
volatility in radvary(t), for which we suggest smoothing
out the radvary(t) function. This is examined in Section
4.2 as well.

Beyond just defining the small-ball-radii of the union of
balls, we also explore if mode based structure can help meet
containment criteria. This is specifically designed for more
complex data (e.g. functional data) which might have dif-
ferent measures of containment (e.g. uniform containment
versus pointwise). Defining conformal scores relative to con-
tainment in mode groups can naturally be combined with a
the small-ball-radii selection approaches. Specifically, for
each mode cluster of the simulations, treat the creation of
the nested sets separately as if there was only 1 mode. This
includes assessing containment of an observation; the ob-
servation must be completely contained in a single mode’s
structure to be defined as contained. To combine the nested
sets of the multiple modes, we use the global pseudo-density
estimates to order the simulations and defined the relative
Ft. More concretely, letFt = ∪m∈{1,...,M}Fmtm whereFmtm
is the level set for mode m made with simulations from m

mode cluster with simulations that have pseudo-densities
greater or equal to the tth lowest pseudo-density across all
modes.

3.5. Extending to different outcome spaces

To extend to more complex spaces, including the example
in Section 4.2, we envision that only one change is required
to adapt to these spaces. Although the small-ball-radii can
be estimated relative to any the distance function, in new
spaces we can image the prediction region construction may
have to change a little for the best interpretive value. For
example, Section 4.2 defines our nested prediction regions
for multivariate functions as regions relative to the function’s
own multidimensional output space. We imagine this is very
space dependent, but that only minor changes in assessing
containment and the geometric definitions of the prediction
regions.

4. Examples
To assess our new method, we demonstrate two different
uses under oracle settings (i.e., with simulators that draw
from the true conditional distribution). The first has an out-
come space in R1 which we use to compare against other
conformal approaches, and examine the effect of the num-
ber of simulations B. Our second example demonstrates
the versatility of our proposed approach by using a more
geometrically complex outcome space.

4.1. Example with R1 Outcome Space

In our first example, we utilize a generative distribution
from Lei and Wasserman (2014), defined by the following
set of equations:

X ∼ Unif(−1.5, 1.5)

(Y |X = x) ∼ 0.5N(f(x)− g(x), σ2(x))

+ 0.5N(f(x) + g(x), σ2(x)) ,

(5)

where

f(x) = (x− 1)2(x+ 1)

g(x) = 2
√

(x+ 0.5) · I(x ≥ −0.05)

σ2(x) = 1/4 + |x| ,

and is visualized in Figure 2.

To assess the properties of our method, we construct a cali-
bration set consisting of 300 observations. Our simulation
model, being an oracle, returns draws from the true condi-
tional distribution. We compare the effect of using B = 200
and B = 1000 simulations to define the nested sets for both
calibration and test observations. Given the simplicity of
this example’s outcome space, we will only demonstrate
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Figure 2. Visualization of the distribution of data generated from
Equation 5 first proposed by Lei and Wasserman (2014).

our approach with a fixed radius (defined by the minimum
covering distance for the top 80% of the simulations) and
will use σ-quantile of 25%.

Figure 3 visualizes the distribution of conformal scores from
the calibration set for both B = 200 and B = 1000. As
discussed at the end of Section 3, in an oracle setting we
would hope that each nested set Ft would contain approx-
imately t/B observations. Hence a natural diagnostic of
our proposed method would be to see if the distributions
of the conformal scores are roughly uniform in this case,
which seems to be the case for the conformal scores for both
B = 200 and 1000 in Figure 3.

An additional means of assessing our method’s performance
is to examine the empirical local coverage of the predic-
tion regions. Given the oracle setting and the similarity of
our method’s conformal scores to high posterior density
(HPD) values, we expect our approach to outperform other
local conformal approaches that use CDE values as confor-
mal scores. We define a test set with X values that vary
across a fine grid between −1.5 and 1.5. We set the desired
confidence level (1 − α) to be 0.6 for the clearest visual
comparison. For each x value, we create prediction regions
based on B = 200 and B = 1000 simulations. To visu-
alize each region we took a fine grid of potential y values
between −8.5 and 8.5, and determined which of these were
contained in the prediction region. For each x value we
also generated 300 new samples from the true distribution
of Y conditioned on X = x and examined the proportion
of these samples that were contained in the prediction re-
gion. The results of these two assessments can be see in
the subplots of Figure 4a and 4b. The prediction regions fit
the data very well, and across each value of X we observe
that approximately 60% of the newly created test observa-

Figure 3. Visualizations of cumulative distribution conformal
scores for the calibration set for the first example for B = 200
and B = 1000 simulations. A dashed grey line is included to
show the optimal cumulative distribution if the conformal scores
were distributed normally. One can see the empirical cumula-
tive distribution varies more from the dashed line with B = 200
than B = 1000, but that overall both empirical cumulative distri-
butions suggest that the conformal scores are roughly uniformly
distributed.

tions are covered. We can observe that when moving from
B = 200 simulations (Figure 4a) to B = 1000 simulations
(Figure 4b), we see a decrease in the variability of the re-
gions’ shape (relative to what is expected) and a decrease in
the variability of the containment proportions.

We compare our method to other approaches that utilize the
conditional density estimates and HPD values as conformal
scores. For each of the following approaches, we use split
conformal inference with 300 points in the calibration set,
and with a conditional density estimate fixed equal to the
truth. The simplest approach (the global CDE approach)
uses the conditional density estimate as the conformal score.
The second approach (the global HPD approach) uses HPD
values as the conformal score, and has been proposed more
recently in works such as Gupta et al. (2020, Appendix D)
and Izbicki et al. (2021). Third, we again use the conditional
density estimate as the conformal score, but follow Lei
and Wasserman (2014)’s local conformal approach. Local
conformal approaches partition X and obtain provide finite-
sample validity per partition. Following the approach of Lei
and Wasserman (2014), we partition the X space into eight
bins and for an individual test x value we use calibration
conformal scores (CDE values) only from those calibration
points with x values in the same bin as the test x value. Our
fourth approach again uses the conditional density estimate
as the conformal score but follows Izbicki et al. (2021)’s
CD-split+ local approach. This approach is similar to
Lei and Wasserman (2014)’s approach, except in that it
groups the x values relative to their predicted conditional
density estimates using a profile distance. (See Izbicki et al.
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(2021) for more details on the profile distance.) We assess
these procedures in the same fashion as described to assess
ours.

Visualization of this assessment for the above procedures
can be found in the c, d, e, and f subplots of Figure 4
(respectively relative to presentation order in the above para-
graph). Under these oracle conditions the global HPD and
our approach preform almost identically. Compared to the
CDE based approaches (even those designed for localized
validity), our method outperforms them in obtaining exact
local validity. Note that all approaches are conservatively
marginally valid by construction.

4.2. Example with geometrically complex outcome
space

One of the promising features of our proposed conformal
approach, as applied to simulation models, is that the ex-
tension to more complicated spaces is straightforward. In
this subsection we present such an example, modeling the
evolution of epidemics as multivariate functional data. We
define a hierarchical generative process as follows:

X ∼ Unif(0, 1)

(X ′|X = x) = 2 · (x− 0.5)

(Z|X ′ = x′) ∼ 0.5 ·N(f(x′)− g(x′), σ2(x′))

+ 0.5 ·N(f(x′) + g(2 · (x′), σ2(x′))

(R0|Z = z) = 1/7 · z + 2

(f |R0 = r0) ∼ SIR(β = 0.1, γ = 0.1/r0)
(6)

where

f(x′) = (x′ − 1)2(x′ + 1)

g(x′) = 2
√
x′ + 0.5 · I(x′ ≥ −0.05)

σ2(x′) = 1/4 + |x′| .

The object of interest is the complete trajectory of the epi-
demic defined by the path of the epidemic through a three-
dimensional unit simplex, where a point represents the pro-
portion of the population that is susceptible, infected, or
recovered at a given time. In the generative process, we
use an approximation to the susceptible, infected or recov-
ered (SIR) model in the form of a Bernoulli discrete ap-
proximation of the standard ODE SIR model, with 1000
individuals of which 50 are initially infected (Kermack and
McKendrick, 1927; Tuckwell and Williams, 2007). Recent
work in epidemiology such as Gallagher (2019) encourages
the assessment of this trajectory in a time-invariant manner,
and we do so by treating each epidemic trajectory as a geo-
metric filament. For this example we used the R package,
EpiCompare, to simulate SIR epidemics (Gallagher and
LeRoy, 2021).

The hierarchical generative process is visualized in Figure
5. The top subplot highlights the distribution of the latent
variable R0 relative to the value of x, and includes a red
line to highlight the distribution of R0 values when x =
0.64. The bottom subplot presents a visual representation
of simulated epidemic filaments in the three-dimensional
unit simplex (representing the proportion of the population
susceptible, infected or recovered at a given time) associated
with an x value of 0.64.

Prior to the creation of prediction regions we need to make
two decisions. First, we define a filament distance between
two epidemics as

dY(f1, f2) :=

∫ 1

t=0

(f1(t)− f2(t))2dt . (7)

In this distance we view each filament f as a function de-
fined on t ∈ [0, 1], where, for example, f(0.25) is the point
that is a quarter of the length of the filament away from its
starting point. Second, since we are interested in predicting
where the true epidemic trajectory will fall, we define each
set Ft as the union of small filamental bands around each
simulation with a psuedo-density estimate greater or equal
to the tth lowest psuedo-density estimate. We also define
the minimum covering distance of an simulated epidemic
(used to determine δb,ti ) as the smallest width of the fila-
mental bands centered other simulations to fully cover the
simulated epidemic.

4.2.1. SELECTING TUNING PARAMETERS

In order to demonstrate the selection of σ, we first se-
lect three X values that have different modal and spread
structure. For this example we create simulations for
X ∈ {0, 0.64, 0.85} as the first has simulations with one
mode and the later have simulations with two modes. Addi-
tionally, X = 0.64 and X = 0.85 have different “spreads”
of their simulations. We select fixed randomization seeds so
that the simulations from these X values have the expected
number of modes in a visual comparison and then run mode
clustering on the simulations across a grid of potential σ-
quantiles (see Ciollaro et al., 2016, for examples.). For
B = 200 we find σ-quantiles of 15%-25% identified the
correct mode structure and for B = 1000, we found the
σ-quantiles 25%-30% performed optimally. We selected
to use σ-quantiles at 20% and 25% for B = 200 and 1000
respectively. This selection also included selecting mode
clustering parameters associated with convergence of the
algorithm (see Fukunaga and Hostetler (1975) for more
details).

Given the complexity of the output space and the volatil-
ity of our varying radius approach, we will also use
X ∈ {0, 0.64, 0.85} to identity potential smoothings of
the radvary function (from equation 4). To do so we first
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Figure 4. A comparison of different conformal inference approaches and how each approach perform on a local / conditional level under
an oracle fit. From a) to f), we include our simulation-based approach with B = 200, our simulation-based approach with B = 1000,
standard conformal approach using the CDE as the conformal score, standard conformal approach using HDP as the conformal score, Lei
and Wasserman (2014)’s local conformal approach using the CDE as a conformal score, and Izbicki et al. (2021)’s CD-split+ local
conformal approach using the CDE as a conformal score. For each approach we examine prediction regions across the range of potential
x values both visually (in the larger subplot) and estimated the coverage of the prediction region using 300 new samples generated from
the true distribution of Y conditioned on X = x.
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Figure 5. Visualizing the generative distribution as described in
Equation 6, where the right plot is a sampling of epidemics where
the associated x value is 0.64.

define eight smoothing functions, four of which are smooth-
ing splines with varying degrees of freedom (50, 25, 10, 5),
and the other four as a moving minimum function with
varying window sizes (5, 10, 25, 50). To select the optimal
smoothing functions we create prediction regions based on
B simulations for the three X values, and then create B
more simulations and examine how closely the distribution
of conformal scores of the second set are to a uniform dis-
tribution. We compare to a uniform distribution because
we designed the conformal scores to mirror the structure
of HPD values, which are uniformly distributed. We then
collect KL distances between the empirical and expected
distribution for 20 runs (per X and B values) and visually
select the optimal smooth function. For both B = 200 and
1000, we selected a smoothing spline with with 5 degrees
of freedom, and for B = 200 we also select a moving min-
imum with length 25 whereas for B = 1000 we select a
moving minimum function with window length of 50.

4.2.2. APPLICATION OF APPROACH

Based on the selected tuning parameters, we will look at pre-
diction regions constructed with (i) fixed radius, (ii) fixed
radius with mode structure, (iii) varying radius, and (iv)
varying radius with mode structure. We also examine pre-
diction region approaches with smoothed varying radius
approaches, smoothed either with a smoothing spline or
with a moving minimum function (with parameters speci-
fied above). Similar to Section 4.1, we use 300 points in a
calibration set.

First we consider the distribution of conformal scores based
on different nested set constructions. Figure 6 visualizes
these distributions for B = 1000 across all different predic-
tor set constructors. In each facet, we visualize a histogram
of the conformal scores as well as a empirical cumulative
distribution. If the conformal scores were uniformly dis-
turbed we would observe the cumulative distribution close
to the grey line (which has a slope of 300/1000). The facet
columns are based on whether the set creation used mode
structure as described at the end of Section 3.5, and the rows
capture different approaches to specifying the radius. In this
example, the fixed radius approaches get closest to a uni-
form distribution (with the approach using mode clustering
getting slightly closer). The conformal scores that result
from the unsmoothed varying radius approach skew towards
higher values. Although both smoothing approaches reduce
this skew, the distributions of the conformal scores for all
varying radius approaches are highly concentrated on a few
values around 1000 (for B = 1000). This is less than ideal
as this means 70%, 80%, 90% confidence regions may all
appear identical since the quantile of the set of conformal
scores is the same.

We now pivot to examining local performance. As with the
example in Section 4.1, we applied our approach across a
gird of test X values between 0 and 1. We examined the
containment of the prediction regions on 300 simulations
draw from the conditional distribution. Figure 7 presents
the proportion of the simulations contained in prediction re-
gions with 40%, 60% and 80% confidence. The fixed radius
approaches appear to consistently provide desirable local
coverage with only minor differences between the bimodal
and unimodal R0 groups (X < .25, X ≥ .25). All varying
radius approaches are very conservative at the 80% confi-
dence level, capturing 100% of the simulations. Smooth
approaches seem to not be as conservative at the lower confi-
dence levels but are more volatile in the empirical coverage
amounts than the fixed radius approaches and seem more
effected by the change of the number of modes. Coverage
performance does not seem to vary much depending on
whether or not we use mode structure.

To understand why our varying radius methods are under
performing in this oracle setting, we select a single X value
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Figure 6. For B = 1000 simulations, this figure displays the
300 calibration samples’ conformal scores across different nested
level/radii approaches. We examine the histogram and cumulative
distribution of these scores for each approach.

(X = 0.8) and visualize the sequences of nested sets for
each construction approach in Figure 9. Figure 8 provide in-
formation about the simulation set structure for X = 0.8 as
well. In Figure 8 notice that the lower cluster of simulations
tend to have lower pseudo densities. For the fixed radius, we
can see that there are a large number of distinct prediction
regions captured by the small squares varying in color in
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Figure 7. For B = 1000 simulations, this figure presents the em-
pirical proportion of new test simulations contained given then are
associated with a specific X value and we examine across a grid of
X values. We examine this proportion for confidence levels 40%,
60% and 80% and across the multiple radii defining approaches.
The lighter colored line is the expected proportion and the darker
line is the empirical coverage.

the fixed radius subplots in Figure 9. On the other hand,
for the non-smoothed varying radius prediction regions it
appears that there are only a few different level sets. It is
possible that this was caused by a very large value from
the radvary function early on that lead to an early Ft (with
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high t) individual simulations all having a large radius. This
would led to the appearance that there was only two discrete
level sets, which matches well with the patterns observed in
Figure 7.
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Figure 8. For B = 1000, this figure captures the underlying struc-
ture that all prediction regions have access to and the where along
the generative distribution where X = .8 belongs. The lower
two subplots highlight the psuedo-density values for the simulated
curves and which mode cluster they below to.

Generally speaking, this example shows the potential useful-
ness of our approach on complex outcome spaces, but also
the potential danger in utilizing varying radius approaches
as currently proposed.

5. Discussion and Future Work
In this discussion we will make comparisons between our
work and current work in the literature, discuss potential
alterations to our approach, and present a few avenues of
future work.

The objective of this work is to bring conformal inference
to simulation-based models. We also show how the use of
flexibility of simulation models in conjunction with nested
conformal inference can bring conformal inference to out-
come spaces of greater complexity. Our two examples show
the potential of our approach to do just that, but also high-
light different complexities that a practitioner would need
to address.

It is important to consider comparisons between our ap-
proach and existing conformal tools. For outcomes spaces
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Figure 9. For B = 1000 simulations, this figure visualizes a the se-
quence of nested sets for each radii approach for X = .8. Figure 8
provides supplementary information about what these approaches
use to create the prediction regions. Notice that there only seems
to be a small sequence of nested sets for the varying radius ap-
proaches. This is likely due to large early values of radvary that
made an early nested level set very large. Problems like this can’t
occur with the fixed radius approaches, and results in being able to
see many different nested level sets.

in Rd, Lei and Wasserman (2014) and Izbicki et al. (2021)’s
HPD-split use conditional density estimates or HPD val-
ues as conformal scores. From a theoretical view with well
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fit conditional density estimates, using HPD values as con-
formal scores lead to desired local coverage and density
level sets produce efficient prediction regions. Moreover, in
one-dimensional outcomes spaces, these approaches would
naturally outperform simulation models (if the base CDE
model and the simulation models reflected the same distribu-
tion), due to the smoothness of the implicit nested set struc-
ture created by a CDE or HPD function. However, when
the outcome space is Rd, d > 1, HPD and estimating den-
sity level sets become more computationally expensive, in
part because computational implementations of HPD often
require having a high resolution CDE grid for the outcome
space. As such, we suggest that our approach may provide
a useful avenue for high-dimensional Euclidean outcome
spaces, as most of our structure relies on distances between
simulations which are less impacted by the dimension of
the space than high resolution grids.

Moving beyond Euclidean outcome spaces, in Section 2
we discussed two conformal approaches that extended con-
formal inference to one-dimensional functional data. Lei
et al. (2015) helped motivate this work, and our approach
appears visually very similar in applications with a one-
dimensional functional data outcome space (specifically,
f(t) ∈ R1, t ∈ [0, 1]). In particular given the use of mode
clustering in Lei et al. (2015), practitioners might be hard-
pressed to justify using our approach. Nevertheless, our
approach provides an avenue to extending to functional data
with f(t) ∈ Rd and t ∈ Rd. Extensions of both Lei et al.
(2015) and Romano et al. (2019) (see Section 2 for refresh-
ers) to higher dimensional functional data are not intrinsi-
cally natural and the most natural extension might be with
convex containment regions (which are less efficient than
ones demonstrated in Section 4.2). The work presented here
represents a useful contribution to quantifying uncertainty
in such situations.

Our proposed approach requires multiple decisions, each of
which affects the resulting prediction region. These include
the selection of the ranking function (λbi ). We settled on
using a pseudo-density estimate given the associated effi-
ciency of prediction regions in Euclidean outcome spaces
built using density estimates. Other approaches to ranking,
including depth and local depth (e.g. Geenens and Nieto-
Reyes, 2017; Paindaveine and Van bever, 2013), could be
an interesting approach for practitioners in non-Euclidean
outcome spaces. Use of depth to calculate ranks would
lead to prediction regions that appear more like the intersec-
tion of the depth level set and α-hull (Krasnoshchekov and
Polishchuk, 2014) around the top simulations. This is less
interpretable in terms of notions of depth, but by construc-
tion still obtains marginal finite-sample validity if included
in our pipeline.

The other decision a practitioner faces is the means of con-

structing the level sets. We used unions of balls with dif-
ferent radius selection tools, and both examples suggest
that varying radius approaches preformed worse than the
more simple fixed radius approaches. Nonetheless we see
these approaches as well motivated by arguments in Baı́llo
et al. (2000) and Walther (1997). A geometric analysis that
attempts to define a sequence of nested sets that converge
to density level sets may naturally define a better way to
create nested sets than a fixed radius approach. We can also
imagine that model clustering (which did not seem to affect
the strength of the method in our examples) might be useful
in other settings and can be made more computationally
efficient through the use of distance-centric clustering or by
combining projection approaches (e.g. Lee et al., 2008) and
mode clustering in the projection space.

Finally, we see two avenues for future work. The first is
application to real world examples, with imperfect simu-
lation models. Ongoing work will apply this approach to
tropical cyclone feature modeling, with the end goal of in-
forming human-in-the-loop processes. A second objective is
to show how our approach can be combined with other ideas
in conformal inference, in particular (Izbicki et al., 2021)’s
CD-split+ local conformal approach, which clustered
the X space using estimated HPD values from a conditional
density estimate. We envision that, given our conformal
score similarity to HPD, that CD-split+ might be ex-
tended to work with our approach.
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